
GATE CE

Previous Year Paper 12 Feb, 2023 Shift 2

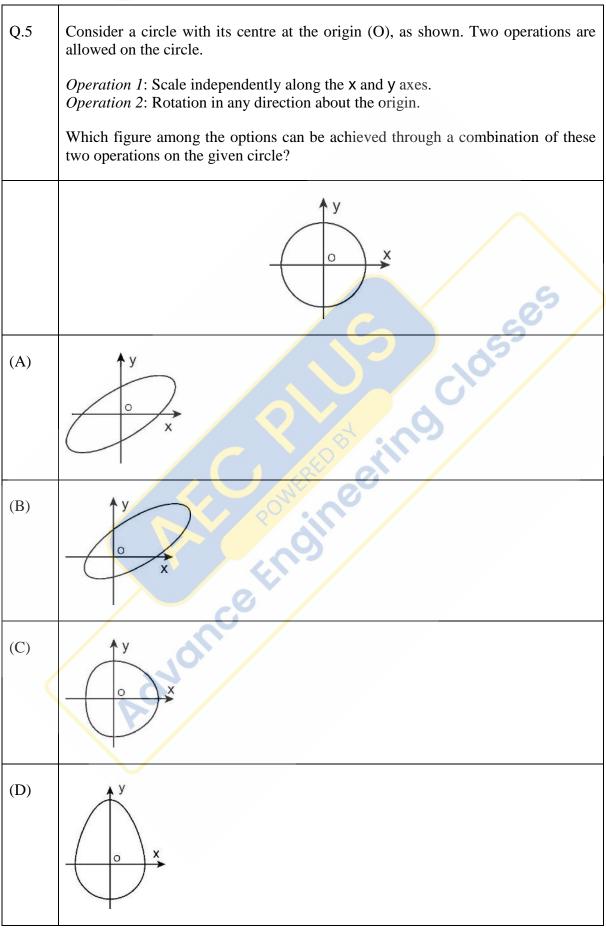
Civil Engineering (CE) Set 2

General Aptitude (GA)

Q.1 – Q.5 Carry ONE mark Each

Q.1	The line ran the page, right through the centre, and divided the page into two.
(A)	across
(B)	of
(C)	between
(D)	about
	Contraction of the contraction o

Q.2	Kind :: Often : Seldom
	(By word meaning)
	Ce
(A)	Cruel
(B)	Variety
(C)	Туре
(D)	Kindred



Q.3	In how many ways can cells in a 3×3 grid be shaded, such that each row and each column have exactly one shaded cell? An example of one valid shading is shown.
(A)	2
(B)	9
(C)	3
(D)	6
	20mille
<	Advonceting

Q.4	There are 4 red, 5 green, and 6 blue balls inside a box. If N number of balls are picked simultaneously, what is the smallest value of N that guarantees there will be at least two balls of the same colour?
	One cannot see the colour of the balls until they are picked.
(A)	4
(B)	15
(C)	5
(D)	2
	Advonce incertification

Page **4** of **43**

Q.6 – Q.10 Carry TWO marks Each

Q.6	Elvesland is a country that has peculiar beliefs and practices. They express almost all their emotions by gifting flowers. For instance, if anyone gifts a white flower to someone, then it is always taken to be a declaration of one's love for that person. In a similar manner, the gifting of a yellow flower to someone often means that one is angry with that person.
	Based only on the information provided above, which one of the following sets of statement(s) can be logically inferred with <i>certainty</i> ?
	(i) In Elvesland, one always declares one's love by gifting a white flower.
	(ii) In Elvesland, all emotions are declared by gifting flowers.
	(iii) In Elvesland, sometimes one expresses one's anger by gifting a flower that is not yellow.
	(iv) In Elvesland, sometimes one expresses one's love by gifting a white flower.
(A)	only (ii)
(B)	(i), (ii) and (iii)
(C)	(i), (iii) and (iv)
(D)	only (iv)

Q.7	Three husband-wife pairs are to be seated at a circular table that has six identical chairs. Seating arrangements are defined only by the relative position of the people. How many seating arrangements are possible such that every husband sits next to his wife?
(A)	16
(B)	4
(C)	120
(D)	720
	Advonce Engineering

Q.8	Based only on the following passage, which one of the options can be inferred with <i>certainty</i> ?
	When the congregation sang together, Apenyo would also join, though her little screams were not quite audible because of the group singing. But whenever there was a special number, trouble would begin; Apenyo would try singing along, much to the embarrassment of her mother. After two or three such mortifying Sunday evenings, the mother stopped going to church altogether until Apenyo became older and learnt to behave.
	At home too, Apenyo never kept quiet; she hummed or made up silly songs to sing by herself, which annoyed her mother at times but most often made her become pensive. She was by now convinced that her daughter had inherited her love of singing from her father who had died unexpectedly away from home.
	[Excerpt from <i>These Hills Called Home</i> by Temsula Ao]
(A)	The mother was embarrassed about her daughter's singing at home.
(B)	The mother's feelings about her daughter's singing at home were only of annoyance.
(C)	The mother was not sure if Apenyo had inherited her love of singing from her father.
(D)	When Apenyo hummed at home, her mother tended to become thoughtful.
	dn

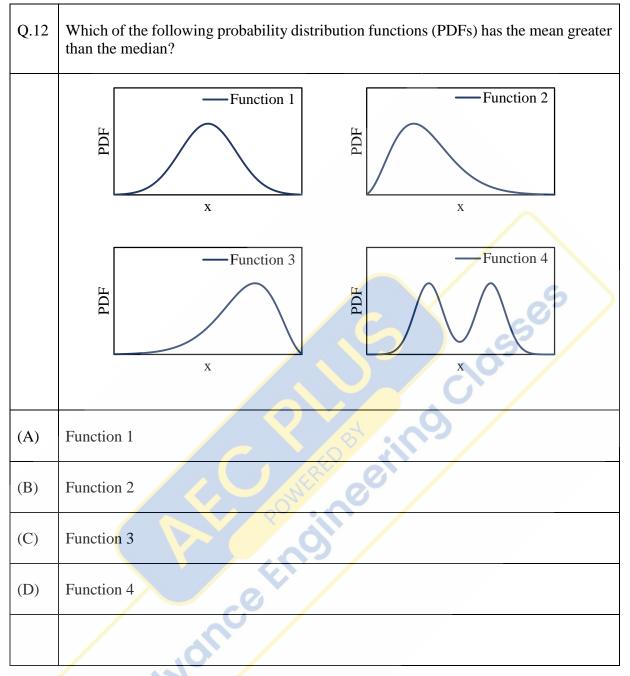
Q.9	If x satisfies the equation $4^{8^x} = 256$, then x is equal to
(A)	$\frac{1}{2}$
(B)	log ₁₆ 8
(C)	$\frac{2}{3}$
(D)	log ₄ 8
	Clo.

Q.10	Consider a spherical globe rotating about an axis passing through its poles. There are three points P , Q , and R situated respectively on the equator, the north pole, and midway between the equator and the north pole in the northern hemisphere. Let P , Q , and R move with speeds v_P , v_Q , and v_R , respectively. Which one of the following options is CORRECT?
	CO
(A)	$v_P < v_R < v_Q$
(B)	$v_P < v_Q < v_R$
(C)	$v_P > v_R > v_Q$
(D)	$v_P = v_R \neq v_Q$

Organizing Institute: IIT Kanpur

Page **8** of **43**

Г


Civil Engineering (CE) Set 2

٦

Q.11 – Q.35 Carry ONE mark Each

Q.11	Let ϕ be a scalar field, and u be a vector field. Which of the following identities is true for div (ϕu) ?
(A)	$\operatorname{div}(\phi \boldsymbol{u}) = \phi \operatorname{div}(\boldsymbol{u}) + \boldsymbol{u} \cdot \operatorname{grad}(\phi)$
(B)	$\operatorname{div}(\phi \boldsymbol{u}) = \phi \operatorname{div}(\boldsymbol{u}) + \boldsymbol{u} \times \operatorname{grad}(\phi)$
(C)	$\operatorname{div}(\phi \boldsymbol{u}) = \phi \operatorname{grad}(\boldsymbol{u}) + \boldsymbol{u} \cdot \operatorname{grad}(\phi)$
(D)	$\operatorname{div}(\phi \boldsymbol{u}) = \phi \operatorname{grad}(\boldsymbol{u}) + \boldsymbol{u} \times \operatorname{grad}(\phi)$
	5 55
	Advonce Engineering Advonce Engineering

Q.13	A remote village has exactly 1000 vehicles with sequential registration numbers starting from 1000. Out of the total vehicles, 30% are without pollution clearance certificate. Further, even- and odd-numbered vehicles are operated on even- and odd-numbered dates, respectively. If 100 vehicles are chosen at random on an even-numbered date, the number of vehicles expected without pollution clearance certificate is
(A)	15
(B)	30
(C)	50
(D)	70
Q.14	A circular solid shaft of span $L = 5$ m is fixed at one end and free at the other end. A torque $T = 100$ kN.m is applied at the free end. The shear modulus and polar moment of inertia of the section are denoted as G and J, respectively. The torsional rigidity GJ is 50,000 kN.m ² /rad. The following are reported for this shaft:
	Statement i)The rotation at the free end is 0.01 radStatement ii)The torsional strain energy is 1.0 kN.m
	With reference to the above statements, which of the following is true?
(A)	Both the statements are correct
(B)	Statement i) is correct, but Statement ii) is wrong
(C)	Statement i) is wrong, but Statement ii) is correct
(D)	Both the statements are wrong

Q.15	M20 concrete as per IS 456: 2000 refers to concrete with a design mix having
(A)	an average cube strength of 20 MPa
(B)	an average cylinder strength of 20 MPa
(C)	a 5-percentile cube strength of 20 MPa
(D)	a 5-percentile cylinder strength of 20 MPa
	e e e e e e e e e e e e e e e e e e e
Q.16	When a simply-supported elastic beam of span <i>L</i> and flexural rigidity <i>EI</i> (<i>E</i> is the modulus of elasticity and <i>I</i> is the moment of inertia of the section) is loaded with a uniformly distributed load <i>w</i> per unit length, the deflection at the mid-span is $\Delta_0 = \frac{5}{384} \frac{wL^4}{EI}.$ If the load on one half of the span is now removed, the mid-span deflection
(A)	reduces to $\Delta_0/2$
(B)	reduces to a value less than $\Delta_0/2$
(C)	reduces to a value greater than $\Delta_0/2$
(D)	remains unchanged at Δ_0
	A

Q.17	Muller-Breslau principle is used in analysis of structures for	
(A)	drawing an influence line diagram for any force response in the structure	
(B)	writing the virtual work expression to get the equilibrium equation	
(C)	superposing the load effects to get the total force response in the structure	
(D)	relating the deflection between two points in a member with the curvature diagram in-between	
	6	
Q.18	A standard penetration test (SPT) was carried out at a location by using a manually operated hammer dropping system with 50% efficiency. The recorded SPT value at a particular depth is 28. If an automatic hammer dropping system with 70% efficiency is used at the same location, the recorded SPT value will be	
(A)	28	
(B)	20	
(C)	40	
(D)	25	
	JUCH	
	A	

Q.19	A vertical sheet pile wall is installed in an anisotropic soil having coefficient of horizontal permeability, k_H and coefficient of vertical permeability, k_V . In order to draw the flow net for the isotropic condition, the embedment depth of the wall should be scaled by a factor of, without changing the horizontal scale.
(A)	$\sqrt{\frac{k_H}{k_V}}$
(B)	$\sqrt{\frac{k_V}{k_H}}$
(C)	1.0
(D)	$\frac{k_H}{k_V}$
	ost ing
	Advoncernoineer

Civil Engineering (CE) Set 2

Q.20	Identify the cross-drainage work in the figure.	
	HFL Drainage / Natural Brainage / Natural Full Supply Level Canal	
	Canal Bottom Level	
(A)	Super passage	
(B)	Aqueduct	
(C)	Siphon aqueduct	
(D)	Level crossing	
	eng.	
(Advance	

Page **15** of **43**

	Which one of the following options provides the correct match of the terms listed in Column-1 and Column-2?	
	Column-1	Column-2
	P: Horton equation	
Q.21	Q: Muskingum m	
	R: Penman metho	
		IV: Infiltration
		V: Channel routing
(A)	P-IV, Q-V, R-III	
(B)	P-III, Q-IV, R-I	
(C)	P-IV, Q-III, R-II	
(D)	P-III, Q-I, R-IV	
	C BED B CHINA	
Q.22	In the context of Municipal Solid Waste Management, 'Haul' in 'Hauled Container System operated in conventional mode' includes the	
(A)	time spent by the transport truck at the disposal site	
(B)	time spent by the transport truck in traveling between a pickup point and the disposal site with a loaded container	
(C)	time spent by the transport truck in picking up a loaded container at a pickup point	
(D)	time spent by the transport truck in driving from the depot to the first pickup point	

-		
Q.23	Which of the following is equal to the stopping sight distance?	
(A)	(braking distance required to come to stop) + (distance travelled during the perception-reaction time)	
(B)	(braking distance required to come to stop) – (distance travelled during the perception-reaction time)	
(C)	(braking distance required to come to stop)	
(D)	(distance travelled during the perception-reaction time)	
	5500	
Q.24	The magnetic bearing of the sun for a location at noon is 183° 30′. If the sun is exactly on the geographic meridian at noon, the magnetic declination of the location is	
(A)	3° 30′ W	
(B)	3° 30' E	
(C)	93° 30′ W	
(D)	93° 30' E	
(Judi	
	A	

Q.25	For the matrix $[A] = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$
	which of the following statements is/are TRUE?
(A)	$[A]{x} = {b}$ has a unique solution
(B)	$[A]{x} = {b}$ does not have a unique solution
(C)	[A] has three linearly independent eigenvectors
(D)	[A] is a positive definite matrix
	e en olineerin o
	Advoncetnos

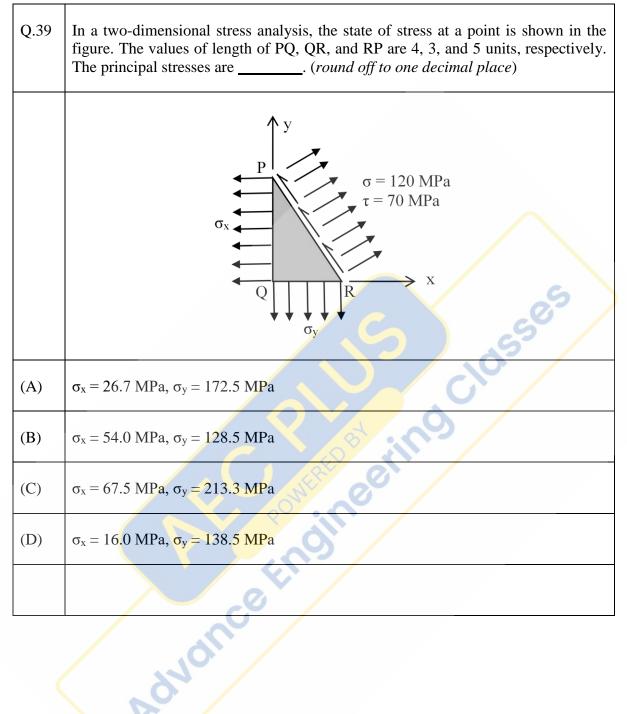
Q.26	In the frame shown in the figure (not to scale), all four members (AB, BC, CD, and AD) have the same length and same constant flexural rigidity. All the joints A, B, C, and D are rigid joints. The midpoints of AB, BC, CD, and AD, are denoted by E, F, G, and H, respectively. The frame is in unstable equilibrium under the shown forces of magnitude P acting at E and G. Which of the following statements is/are TRUE?	
	$\begin{array}{c} A \\ H \\ P \\ H \\ H \\ P \\ H \\ H \\ H \\ H \\ H$	
(A)	Shear forces at H and F are zero	
(B)	Horizontal displacements at H and F are zero	
(C)	Vertical displacements at H and F are zero	
(D)	Slopes at E, F, G, and H are zero	
	John	

Q.27	With regard to the shear design of RCC beams, which of the following statements is/are TRUE?	
(A)	Excessive shear reinforcement can lead to compression failure in concrete	
(B)	Beams without shear reinforcement, even if adequately designed for flexure, can have brittle failure	
(C)	The main (longitudinal) reinforcement plays no role in the shear resistance of beam	
(D)	As per IS456:2000, the nominal shear stress in the beams of varying depth depends on both the design shear force as well as the design bending moment	
	055	
Q.28	The reason(s) of the nonuniform elastic settlement profile below a flexible footing, resting on a cohesionless soil while subjected to uniform loading, is/are:	
(A)	Variation of friction angle along the width of the footing	
(B)	Variation of soil stiffness along the width of the footing	
(C)	Variation of friction angle along the depth of the footing	
(D)	Variation of soil stiffness along the depth of the footing	
<	44	

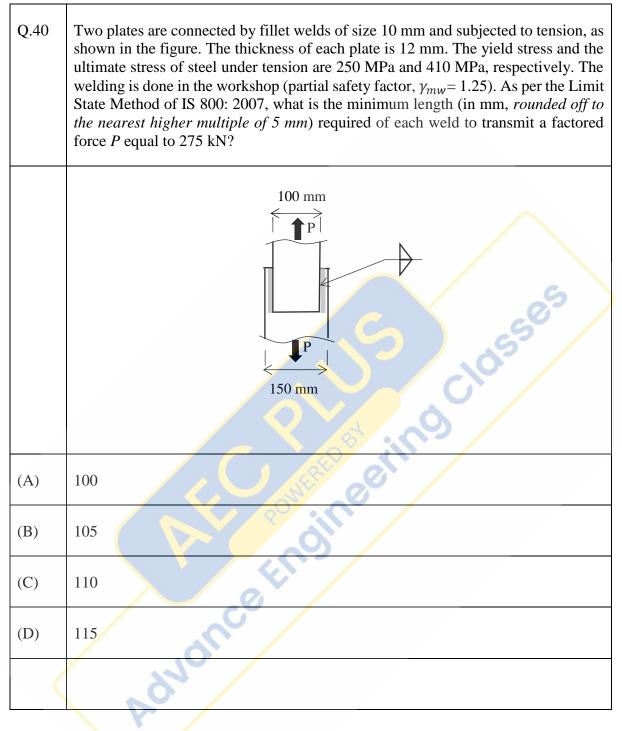
Q.29	Which of the following is/are NOT active disinfectant(s) in water treatment?	
(A)	•OH (hydroxyl radical)	
(B)	O ₃ (ozone)	
(C)	OCl ⁻ (hypochlorite ion)	
(D)	Cl ⁻ (chloride ion)	
	5	
Q.30	As per the Indian Roads Congress guidelines (IRC 86: 2018), extra widening depends on which of the following parameters?	
(A)	Horizontal curve radius	
(B)	Superelevation	
(C)	Number of lanes	
(D)	Longitudinal gradient	
	CO	
Q.31	The steady-state temperature distribution in a square plate ABCD is governed by the 2-dimensional Laplace equation. The side AB is kept at a temperature of 100 °C and the other three sides are kept at a temperature of 0 °C. Ignoring the effect of discontinuities in the boundary conditions at the corners, the steady-state temperature at the center of the plate is obtained as T_0 °C. Due to symmetry, the steady-state temperature at the center will be same (T_0 °C), when any one side of the square is kept at a temperature of 100 °C and the remaining three sides are kept at a temperature of 0 °C. Using the principle of superposition, the value of T_0 is (rounded off to two decimal places).	

Q.32	An unconfined compression strength test was conducted on a cohesive soil. The test specimen failed at an axial stress of 76 kPa. The undrained cohesion (in kPa, <i>in integer</i>) of the soil is	
Q.33	The pressure in a pipe at X is to be measured by an open manometer as shown in figure. Fluid A is oil with a specific gravity of 0.8 and Fluid B is mercury with a specific gravity of 13.6. The absolute pressure at X iskN/m ² (<i>round off to one decimal place</i>).	
	[Assume density of water as 1000 kg/m ³ and acceleration due to gravity as 9.81 m/s^2 and atmospheric pressure as 101.3 kN/m^2]	
	Fluid A Fluid B 75 cm [Note: Figure is not to scale]	
	Advonce	

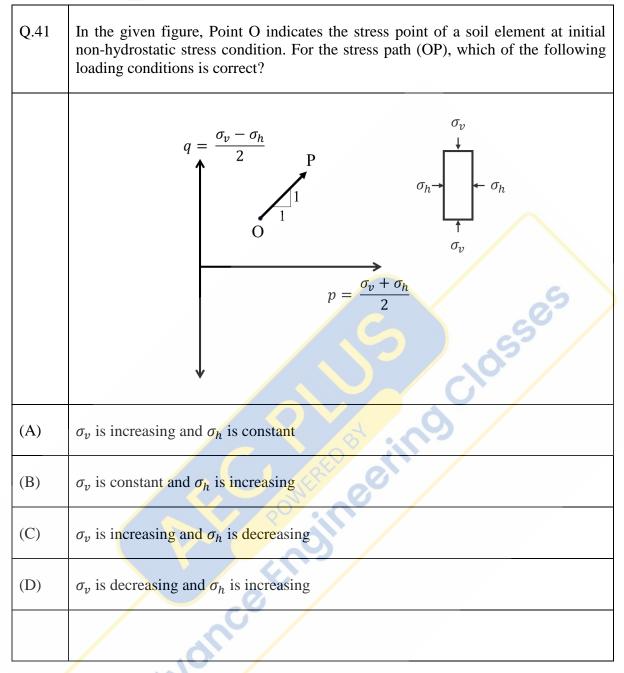
Q.34	For the elevation and temperature data given in the table, the existing lapse rate in the environment is°C/100 m (<i>round off to two decimal places</i>).	
	Elevation from ground level (m)	Temperature (°C)
	5	14.2
	325	16.9
		65
		5
Q.35	If the size of the ground area is $6 \text{ km} \times 3 \text{ km}$ and the corresponding photo size in the aerial photograph is $30 \text{ cm} \times 15 \text{ cm}$, then the scale of the photograph is $1 : _$ (<i>in integer</i>).	
(Advoncernoin	

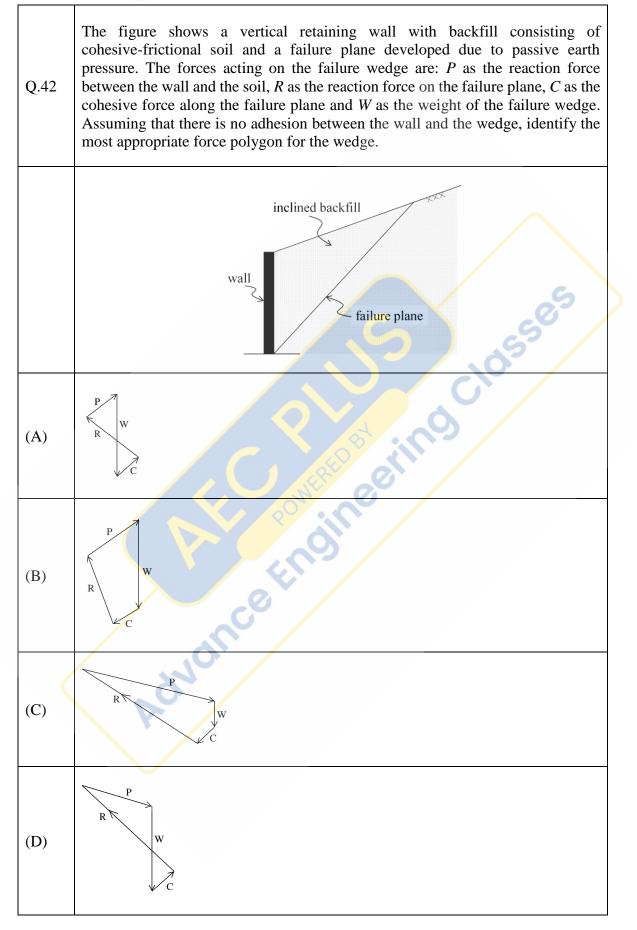

Q.36 – Q.65 Carry TWO marks Each

Q.36	The solution of the differential equation	
	$\frac{d^3y}{dx^3} - 5.5 \frac{d^2y}{dx^2} + 9.5 \frac{dy}{dx} - 5 y = 0$	
	is expressed as $y = C_1 e^{2.5 x} + C_2 e^{\alpha x} + C_3 e^{\beta x}$, where C_1 , C_2 , C_3 , α , and β are constants, with α and β being distinct and not equal to 2.5. Which of the following options is correct for the values of α and β ?	
(A)	1 and 2	
(B)	-1 and -2	
(C)	2 and 3	
(D)	-2 and -3	
Q.37	Two vectors $\begin{bmatrix} 2 & 1 & 0 & 3 \end{bmatrix}^T$ and $\begin{bmatrix} 1 & 0 & 1 & 2 \end{bmatrix}^T$ belong to the null space of a 4×4 matrix of rank 2. Which one of the following vectors also belongs to the null space?	
(A)	$[1 \ 1 \ -1 \ 1]^T$	
(B)	$[2 \ 0 \ 1 \ 2]^T$	
(C)	$\begin{bmatrix} 0 & -2 & 1 & -1 \end{bmatrix}^T$	
(D)	$[3 \ 1 \ 1 \ 2]^T$	



Q.38	Cholesky decomposition is carried out on the following square matrix [A]. $[A] = \begin{bmatrix} 8 & -5 \\ -5 & a_{22} \end{bmatrix}$ Let l_{ij} and a_{ij} be the $(i,j)^{\text{th}}$ elements of matrices [L] and [A], respectively. If the element l_{22} of the decomposed lower triangular matrix [L] is 1.968, what is the value (rounded off to the nearest integer) of the element a_{22} ?
(A)	5
(B)	7
(C)	9
(D)	11
	Advonce the line of the line o





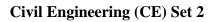
Page **29** of **43**

Q.43	A compound symmetrical open channel section as shown in the figure has a maximum ofcritical depth(s).
	$y \xrightarrow{n_{f}} B_{f} \xrightarrow{n_{m}} B_{f} \xrightarrow{n_{m}} B_{m} \xrightarrow{n_{f}} y_{m} \xrightarrow{B_{m}} B_{m} $
(A)	3
(B)	2
(C)	
(D)	4
	C Star of the
	Advoncernoine

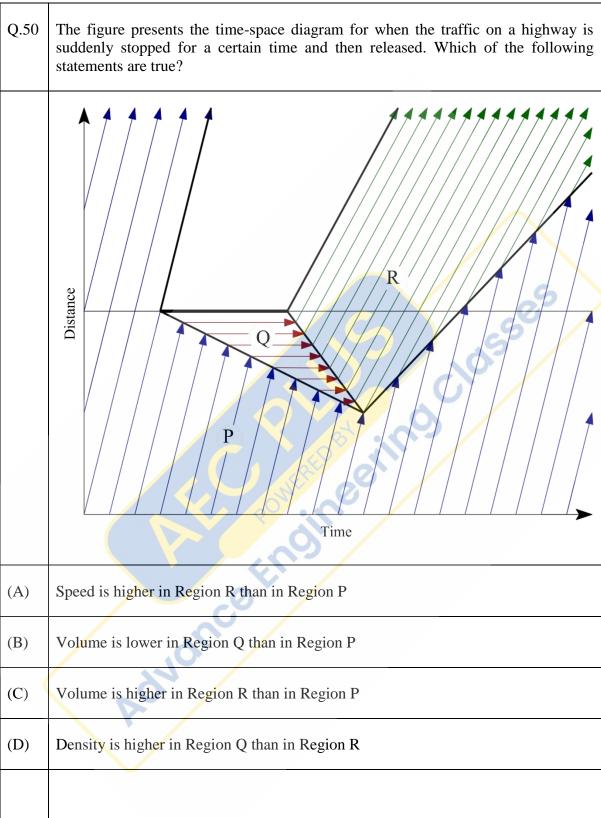
Page **30** of **43**

Q.44	The critical flow condition in a channel is given by [Note: α – kinetic energy correction factor; Q – discharge; A_c – cross-sectional area of flow at critical flow condition; T_c – top width of flow at critical flow condition; g – acceleration due to gravity]
(A)	$\frac{\alpha Q^2}{g} = \frac{A_c^3}{T_c}$
(B)	$\frac{\alpha Q}{g} = \frac{A_c^3}{T_c^2}$
(C)	$\frac{\alpha Q^2}{g} = \frac{A_c^3}{T_c^2}$
(D)	$\frac{\alpha Q}{g} = \frac{A_c^3}{T_c}$
	Advoncernoine

	Air pollutant	Health effect to human and/or test animal			
	(P) Aromatic hydrocarbons	(I) Reduce the capability of the blood to carry oxygen			
	(Q) Carbon monoxide (II) Bronchitis and pulmonary emphysem				
	(R) Sulfur oxides	(III) Damage of chromosomes			
	(S) Ozone	(IV) Carcinogenic effect			
(A)	(P) - (II), (Q) - (I), (R) - (IV), (S) - (III)				
(B)	(P) - (IV), (Q) - (I), (R) - (III), (S) - (II)				
(C)	(P) - (III), (Q) - (I), (R) - (II),	(S) – (IV)			
(D)	(P) - (IV), (Q) - (I), (R) - (II),				
	Advonce	× /			

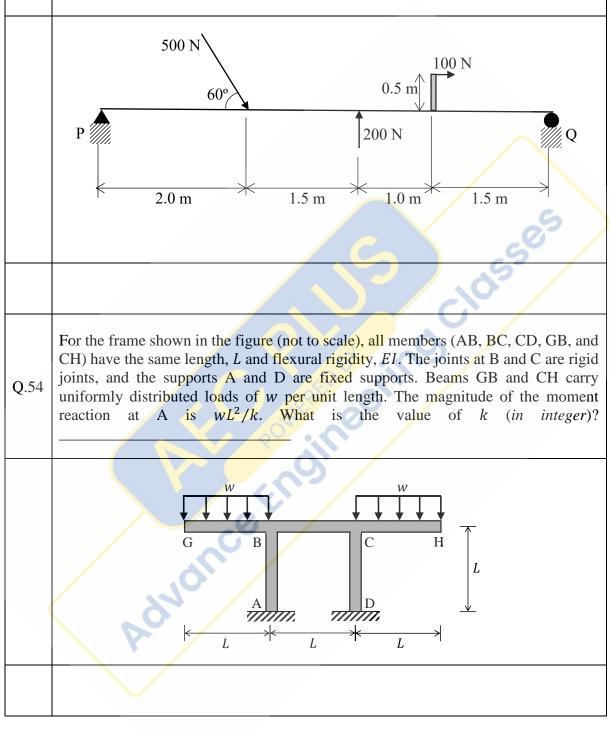


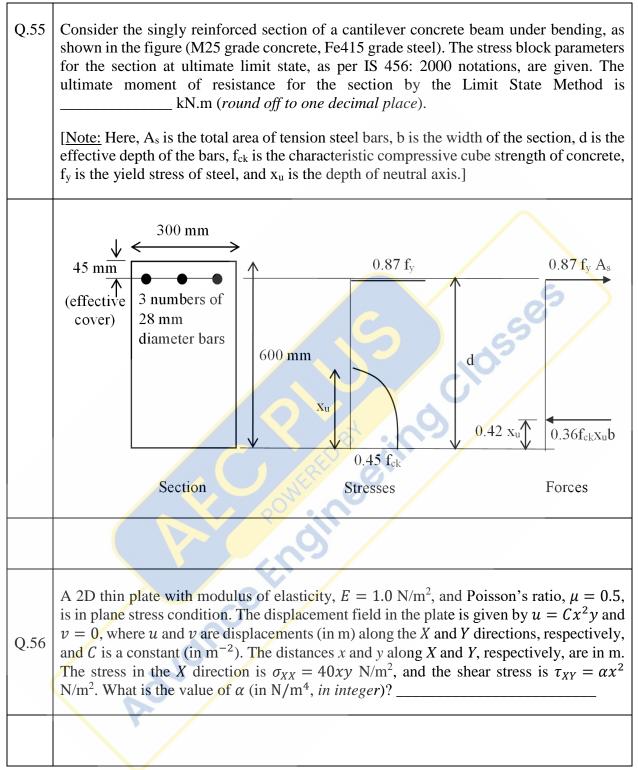
Q.46	to location direction that the l	ry agent is at a on P along strai of each path is atitude (L) and e of P (in km, r	ght-line p given in t departure	eaths of RC he table be e (D) of R	C, CA, AB low as who is (0, 0) kn	and BP of 5 ble circle bea n. What is t	km each. The
		Paths	RC	CA	AB	BP	
		Directions (in degrees)	120	0	90	240	
(A)	L = 2.5;	D = 5.0					
(B)	L = 0.0;	D = 5.0					S
(C)	L = 5.0;	D = 2.5			5		550
(D)	L = 0.0;	D = 0.0				C	
					11	9	
Q.47	Which of	f the following	statement	s is/are TF	RUE?		
(A)		cness of a turbu is proportional					
(B)		eamlines and ea e resulting flow			a source ar	e interchang	ged with each
(C)		ved surface im on the curved			• •		-
(D)		through circular			tum correct	tion factor f	or laminar

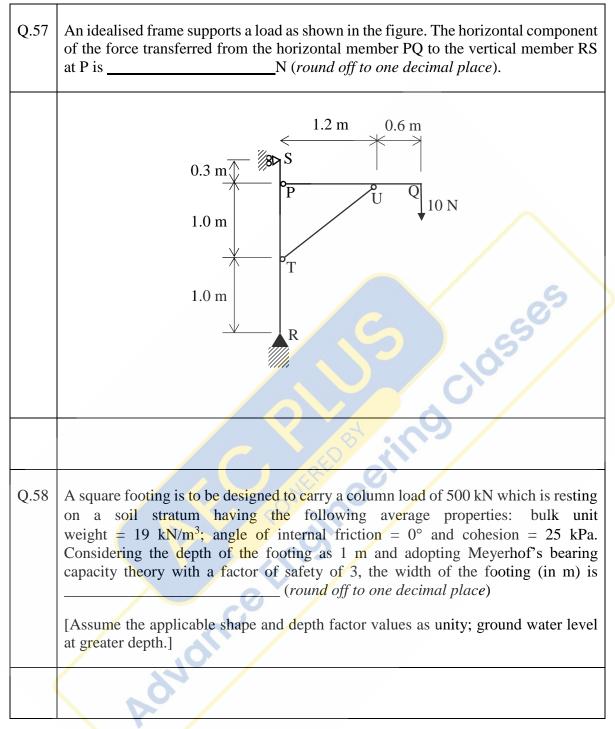


Q.48	In the context of water and wastewater treatments, the correct statements are:
(A)	particulate matter may shield microorganisms during disinfection
(B)	ammonia decreases chlorine demand
(C)	phosphorous stimulates algal and aquatic growth
(D)	calcium and magnesium increase hardness and total dissolved solids
	S
Q.49	Which of the following statements is/are TRUE for the aerobic composting of sewage sludge?
(A)	Bulking agent is added during the composting process to reduce the porosity of the solid mixture
(B)	Leachate can be generated during composting
(C)	Actinomycetes are involved in the process
(D)	In-vessel composting systems cannot be operated in the plug-flow mode
	nc

Ada




Q.51	Consider the Marshall method of mix design for bituminous mix. With the increase in bitumen content, which of the following statements is/are TRUE?
(A)	the Stability decreases initially and then increases
(B)	the Flow increases monotonically
(C)	the air voids (VA) increases initially and then decreases
(D)	the voids filled with bitumen (VFB) increases monotonically
	65
Q.52	A 5 cm long metal rod AB was initially at a uniform temperature of T_0 °C. Thereafter, temperature at both the ends are maintained at 0 °C. Neglecting the heat transfer from the lateral surface of the rod, the heat transfer in the rod is governed by the one-dimensional diffusion equation $\frac{\partial T}{\partial t} = D \frac{\partial^2 T}{\partial x^2}$, where <i>D</i> is the thermal diffusivity of the metal, given as 1.0 cm ² /s. The temperature distribution in the rod is obtained as $T(x,t) = \sum_{n=1,3,5}^{\infty} C_n \sin \frac{n\pi x}{5} e^{-\beta n^2 t},$ where <i>x</i> is in cm measured from A to B with $x = 0$ at A, <i>t</i> is in s, C_n are constants in °C, <i>T</i> is in °C, and β is in s ⁻¹ . The value of β (in s ⁻¹ , rounded off to three decimal places) is
	ANO.
	AC


Q.53 A beam is subjected to a system of coplanar forces as shown in the figure. The magnitude of vertical reaction at Support P is ______N (*round off to one decimal place*).

Q.59	A circular pile of diameter 0.6 m and length 8 m was constructed in a cohesive soil stratum having the following properties: bulk unit weight = 19 kN/m^3 ; angle of internal friction = 0° and cohesion = 25 kPa .
	The allowable load the pile can carry with a factor of safety of 3 is kN (<i>round off to one decimal place</i>).
	[Adopt: Adhesion factor, $\alpha = 1.0$ and Bearing capacity factor, $N_c = 9.0$]
Q.60	For the flow setup shown in the figure (not to scale), the hydraulic conductivities of the two soil samples, Soil 1 and Soil 2, are 10 mm/s and 1 mm/s, respectively. Assume the unit weight of water as 10 kN/m ³ and ignore the velocity head. At steady state, what is the total head (in m, rounded off to two decimal places) at any point located at the junction of the two samples?
	$10 \text{ kPa} \qquad 4 \text{ m} \qquad 4 \text{ m} \qquad 3 \text{ m} \qquad 3 \text{ m} \qquad 3 \text{ m} \qquad 3 \text{ m} \qquad 10 \text{ kPa} \qquad 0 \text{ m} \qquad 3 \text{ m} $
Q.61	A consolidated drained (CD) triaxial test was carried out on a sand sample with the known effective shear strength parameters, $c' = 0$ and $\phi' = 30^{\circ}$. In the test, prior to the failure, when the sample was undergoing axial compression under constant cell pressure, the drainage valve was accidentally closed. At the failure, 360 kPa deviatoric stress was recorded along with 70 kPa pore water pressure. If the test is repeated without such error, and no back pressure is applied in either of the tests, what is the deviatoric stress (in kPa, <i>in integer</i>) at the failure?

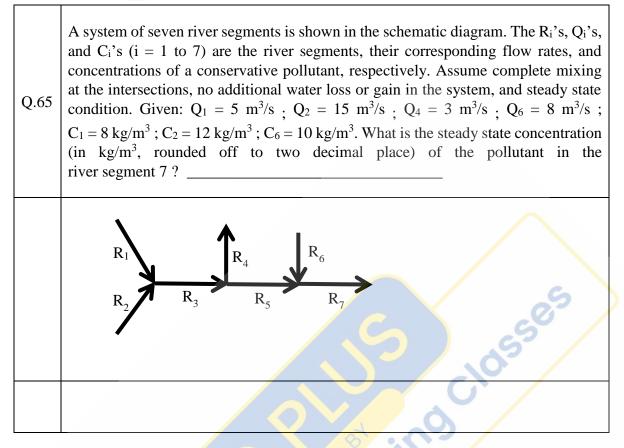
A catchment may be idealized as a circle of radius 30 km. There are five rain gauges, one at the center of the catchment and four on the boundary (equi-spaced), as shown in the figure (not to scale).

The annual rainfall recorded at these gauges in a particular year are given below.

Q.62

Gauge	G ₁	G_2	G ₃	G ₄	G5
Rainfall (mm)	910	930	925	895	905

Using the Thiessen polygon method, what is the average rainfall (in mm, rounded off to two decimal places) over the catchment in that year?



Q.63 The cross-section of a small river is sub-divided into seven segments of width 1.5 m each. The average depth, and velocity at different depths were measured during a field campaign at the middle of each segment width. The discharge computed by the velocity area method for the given data is ______m³/s (*round off to one decimal place*).

		Average	Velocity (m/s) at different depths			
	Segment	depth (D) (m)	0.2D	0.6D	0.8D	
	1	0.40		0.40		
	2	0.70	0.76		0.70	
	3	1.20	1.19		1.13	
	4	1.40	1.25		1.10	
	5	1.10	1.13		1.09	
	6	0.80	0.69	0	0.65	
	7	0.45	- 8	0.42		
			ONER CO			
	The theoretical	aerobic oxidation	of biomass (C ₅ H	I_7O_2N) is given b	below:	
	$C_5H_7O_2N + 5O_2$	$_2 \rightarrow 5CO_2 + NH_3$	+ 2H ₂ 0			
<	constant of 0.23	l oxidation of bio /d at 20°C (logari s biochemical ox f biomass is	thm to base <i>e</i>). N idation, the ratio	leglecting the sec	ond-stage of C to total of	

[Consider the atomic weights of C, H, O and N as 12 g/mol, 1 g/mol, 16 g/mol and 14 g/mol, respectively]

END OF QUESTION PAPER

duance

Page **43** of **43**